Comparison of Primary Doses Obtained in Three 6 MV Photon Beams Using a Small Attenuator.

نویسنده

  • Christoph Trauernicht
چکیده

17 It is a common technique in radiotherapy treatment planning systems to simplify the calculations by splitting the radiation beam into two components: namely the primary and scattered components. The contributions of the two components are evaluated separately and then summed to give the dose at the point of interest. Usually, the primary dose is obtained experimentally by extrapolating the ionization measured within the medium to zero-field size (Godden, Gamma radiation from cobalt 60 teletherapy units. Br. J. Radiol. Suppl. , 45(1983)). This approach offers the opportunity to obtain the primary component of dose without the need for an uncertain non-linear extrapolation. The primary dose can be obtained from two measurements of ionization in a large beam in a water phantom, as well as four measurements of ionization in a narrow beam geometry. The measurements were done over a range of different depths and thus the primary linear attenuation coefficient was also obtained. The calibrated output of a linear accelerator is usually 1.00 Gy per 100 monitor units (MU) at the depth of maximum dose ( d max ) in water for a 10 cm × 10 cm field. The values for the primary dose components at d max in a 10 cm × 10 cm field obtained in three different 6 MV beams using this method are D P ( d max , 10 cm × 10 cm) = 0.925-0.943 Gy/100 MU. The obtained values of the primary dose components compare well with measurements in the same beams extrapolated to zero-field size and also to literature. One can thus conclude that this method has the potential to provide an independent measurable verification of calculations of primary dose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dose Calculations for Lung Inhomogeneity in High-Energy Photon Beams and Small Beamlets: A Comparison between XiO and TiGRT Treatment Planning Systems and MCNPX Monte Carlo Code

Introduction Radiotherapy with small fields is used widely in newly developed techniques. Additionally, dose calculation accuracy of treatment planning systems in small fields plays a crucial role in treatment outcome. In the present study, dose calculation accuracy of two commercial treatment planning systems was evaluated against Monte Carlo method. Materials and Methods Siemens Once or linea...

متن کامل

Calculating Weighting Factors for Mixing Megavoltage Photon Beams to Achieve Desirable Dose Distribution in Radiotherapy

Background: In radiotherapy, low-energy photon beams are better adapted to the treated volume, and the use of high-energy beams can reduce hot spots in the radiation therapy. Therefore, mixing low and high energies with different ratios can control the rate of hotspots, as well as the dose distribution of the target volume.Material and Methods: The percentage depth doses (PDDs) were calculated ...

متن کامل

Investigation of surface and buildup region doses for 6 MV high energy photon beams in the presence of a thermoplastic mask

Background: The accuracy and the reproducibility of radiotherapy can be provided by using immobilization devices such as thermoplastic masks. In head and neck cancer radiotherapy, the patients are mostly immobilized by using thermoplastic masks. In this study, the effect of the thermoplastic mask to the surface and buildup region doses was investigated by using Markus parallel plate ion chamber...

متن کامل

Dosimetric influence of Flattening Filter (FF) and Flattening Filter Free (FFF) 6 and 10 MV photon beams on Volumetric Modulated Arc Therapy (VMAT) planning in case of prostate carcinoma

Background: In the treatment of prostate cancer, radiotherapy is the potential to increase second primary cancers such as bladder and rectal cancers. The reasons for this potential are more monitor units (MUs), therefore a larger total body dose because of leakage radiation, a bigger volume of normal tissue is exposed to lower radiation doses. This study was designed to compare the integral dos...

متن کامل

The effect of electronic disequilibrium on the received dose by lung in small fields with photon beams: Measurements and Monte Carlo study

Background: Prediction of the absorbed dose in irradiated volume plays an important role in the outcome of radiotherapy. Application of small fields for radiotherapy of thorax makes the dose calculation process inaccurate due to the existence of electronic disequilibrium and intrinsic deficiencies in dose calculation algorithms. To study the lung absorbed dose in radiotherapy with smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Radiation protection dosimetry

دوره 173 1-3  شماره 

صفحات  -

تاریخ انتشار 2017